Opportunity ID: 354699

General Information

Document Type: Grants Notice
Funding Opportunity Number: 24-581
Funding Opportunity Title: Cyber-Physical Systems
Opportunity Category: Discretionary
Opportunity Category Explanation:
Funding Instrument Type: Grant
Category of Funding Activity: Science and Technology and other Research and Development
Category Explanation:
Expected Number of Awards: 31
Assistance Listings: 10.310 — Agriculture and Food Research Initiative (AFRI)
Cost Sharing or Matching Requirement: No
Version: Synopsis 5
Posted Date: Jun 05, 2024
Last Updated Date: Jun 10, 2025
Original Closing Date for Applications: Sep 03, 2024 SMALL and MEDIUM Proposals. Accepted anytime during the year-long annual submission window.; FRONTIER Proposals
Current Closing Date for Applications: Aug 28, 2025 FRONTIER Proposals; SMALL and MEDIUM Proposals. Accepted anytime during the year-long annual submission window.
Archive Date: Jun 30, 2028
Estimated Total Program Funding: $30,070,000
Award Ceiling: $7,000,000
Award Floor:

Eligibility

Eligible Applicants: Others (see text field entitled “Additional Information on Eligibility” for clarification)
Additional Information on Eligibility: *Who May Submit Proposals: Proposals may only be submitted by the following:
-Non-profit, non-academic organizations: Independent museums, observatories, research laboratories, professional societies and similar organizations located in the U.S. that are directly associated with educational or research activities.
-Institutions of Higher Education (IHEs): Two- and four-year IHEs (including community colleges) accredited in, and having a campus located in the US, acting on behalf of their faculty members. Special Instructions for International Branch Campuses of US IHEs: If the proposal includes funding to be provided to an international branch campus of a US institution of higher education (including through use of sub-awards and consultant arrangements), the proposer must explain the benefit(s) to the project of performance at the international branch campus, and justify why the project activities cannot be performed at the US campus.

Additional Information

Agency Name: U.S. National Science Foundation
Description: Cyber-physical systems (CPS) are engineered systems that are built from, and depend upon, the seamless integration of computation and physical components. Advances in CPS will enable capability, adaptability, scalability, resiliency, safety, security, and usability that will expand the horizons of these critical systems. CPS technologies are transforming the way people interact with engineered systems, just as the Internet has transformed the way people interact with information. New, smart CPS drive innovation and competition in a range of application domains including agriculture, aeronautics, building design, civil infrastructure, energy, environmental quality, healthcare and personalized medicine, manufacturing, and transportation. CPS are becoming data-rich enabling new and higher degrees of automation and autonomy. Traditional ideas in CPS research are being challenged by new concepts emerging from artificial intelligence and machine learning. The integration of artificial intelligence with CPS, especially for real-time operation, creates new research opportunities with major societal implications.

While tremendous progress has been made in advancing CPS technologies, the demand for innovation across application domains is driving the need to accelerate fundamental research to keep pace. At the same time, the CPS program seeks to open new vistas for the research community to think beyond the usual cyber-physical paradigms and structures and propose creative ideas to address the myriad challenges of today’s systems as well as those of the future that have not yet been designed or fielded.

The CPS program aims to develop the core research needed to engineer these complex CPS, some of which may also require dependable, high-confidence, or provable behaviors. Core research areas of the program includecontrol, data analytics, and machinelearning including real-time learning for control, autonomy, design, Internet of Things (IoT), mixed initiatives including human-in- or human-on-the-loop, networking, privacy, real-time systems, safety, security, and verification. By abstracting from the particulars of specific systems and application domains, the CPS program seeks to reveal cross-cutting, fundamental scientific and engineering principles that underpin the integration of cyber and physical elements across all application domains. The program additionally supports the development of methods, tools, and hardware and software components based upon these cross-cutting principles, along with validation of the principles via prototypes and testbeds. This program also fosters a research community that is committed to advancing education and outreach in CPSand accelerating the transition of CPS research into the real world.

All proposals must include the following as part of the Project Description:

  • AResearch Descriptionthat describes the technical rationaleand technical approach of the CPS research, including the challenges that drive the research problem and how the research integrates cyber and physical components.This section must also describe how the research outcomes are translational to other application domains. Specifically, it must include:
    • A subsection titled “CPS Research Focus” which describes the cyber-physical system attributes of the challenge problem and clearly identifies the core CPS research areas addressed in which the novel and foundational research contributions are being made. This is intended as not a list of core areas but a focused discussion with content
  • An Evaluation/Experimentation Plan that describes how proposed concepts will be validated and outlines the metrics for success;
  • A Project Management and Collaboration Plan that summarizes how the project team is ideally suited to realize the project goals and how the team will ensure effective collaboration;

NSF is working closely with multiple agencies across the federal government, including the U.S. Department of Homeland Security (DHS) Science and Technology Directorate (S&T); the U.S. Department of Transportation (DOT) Federal Highway Administration (FHWA); and the U.S. Department of Agriculture National Institute of Food and Agriculture (USDA NIFA, hereafter referred to as NIFA).

Proposals for three classes of research and education projects—differing in scope and goals—are supported through the CPS program:

  • Smallprojects mayrequest a total budget of up to $600,000 for a period of up to 3 years. They are well suited to emerging new and innovative ideas that may have high impact on the field of CPS. Small projects proposals may be submitted at anytime during the year-long annual submission window.
  • Medium projects may request a total budget ranging from $600,001 to $1,200,000 for a period of up to 3 years. They are well suited to multi-disciplinary projects that accomplish clear goals requiring integrated perspectives spanning the disciplines. Medium Projects proposals may be submitted at anytime during the year-long annual submission window.
  • Frontierprojects must address clearly identified critical CPS challenges that cannot be achieved by a set of smaller projects. Furthermore, Frontier projects should also look to push the boundaries of CPS well beyond today’s systems and capabilities. Funding may be requested for a total of $1,200,001 to $7,000,000 for a period of 4 to 5 years. Note that the Frontier projects have a specific deadline.
Link to Additional Information: NSF Publication 24-581
Grantor Contact Information: If you have difficulty accessing the full announcement electronically, please contact:

NSF grants.gov support
grantsgovsupport@nsf.gov
Email:grantsgovsupport@nsf.gov

Version History

Version Modification Description Updated Date
. Jun 10, 2025
. Jun 05, 2024
. Jun 05, 2024
. Jun 05, 2024
Jun 05, 2024

DISPLAYING: Synopsis 5

General Information

Document Type: Grants Notice
Funding Opportunity Number: 24-581
Funding Opportunity Title: Cyber-Physical Systems
Opportunity Category: Discretionary
Opportunity Category Explanation:
Funding Instrument Type: Grant
Category of Funding Activity: Science and Technology and other Research and Development
Category Explanation:
Expected Number of Awards: 31
Assistance Listings: 10.310 — Agriculture and Food Research Initiative (AFRI)
Cost Sharing or Matching Requirement: No
Version: Synopsis 5
Posted Date: Jun 05, 2024
Last Updated Date: Jun 10, 2025
Original Closing Date for Applications: Sep 03, 2024 SMALL and MEDIUM Proposals. Accepted anytime during the year-long annual submission window.; FRONTIER Proposals
Current Closing Date for Applications: Aug 28, 2025 FRONTIER Proposals; SMALL and MEDIUM Proposals. Accepted anytime during the year-long annual submission window.
Archive Date: Jun 30, 2028
Estimated Total Program Funding: $30,070,000
Award Ceiling: $7,000,000
Award Floor:

Eligibility

Eligible Applicants: Others (see text field entitled “Additional Information on Eligibility” for clarification)
Additional Information on Eligibility: *Who May Submit Proposals: Proposals may only be submitted by the following:
-Non-profit, non-academic organizations: Independent museums, observatories, research laboratories, professional societies and similar organizations located in the U.S. that are directly associated with educational or research activities.
-Institutions of Higher Education (IHEs): Two- and four-year IHEs (including community colleges) accredited in, and having a campus located in the US, acting on behalf of their faculty members. Special Instructions for International Branch Campuses of US IHEs: If the proposal includes funding to be provided to an international branch campus of a US institution of higher education (including through use of sub-awards and consultant arrangements), the proposer must explain the benefit(s) to the project of performance at the international branch campus, and justify why the project activities cannot be performed at the US campus.

Additional Information

Agency Name: U.S. National Science Foundation
Description: Cyber-physical systems (CPS) are engineered systems that are built from, and depend upon, the seamless integration of computation and physical components. Advances in CPS will enable capability, adaptability, scalability, resiliency, safety, security, and usability that will expand the horizons of these critical systems. CPS technologies are transforming the way people interact with engineered systems, just as the Internet has transformed the way people interact with information. New, smart CPS drive innovation and competition in a range of application domains including agriculture, aeronautics, building design, civil infrastructure, energy, environmental quality, healthcare and personalized medicine, manufacturing, and transportation. CPS are becoming data-rich enabling new and higher degrees of automation and autonomy. Traditional ideas in CPS research are being challenged by new concepts emerging from artificial intelligence and machine learning. The integration of artificial intelligence with CPS, especially for real-time operation, creates new research opportunities with major societal implications.

While tremendous progress has been made in advancing CPS technologies, the demand for innovation across application domains is driving the need to accelerate fundamental research to keep pace. At the same time, the CPS program seeks to open new vistas for the research community to think beyond the usual cyber-physical paradigms and structures and propose creative ideas to address the myriad challenges of today’s systems as well as those of the future that have not yet been designed or fielded.

The CPS program aims to develop the core research needed to engineer these complex CPS, some of which may also require dependable, high-confidence, or provable behaviors. Core research areas of the program includecontrol, data analytics, and machinelearning including real-time learning for control, autonomy, design, Internet of Things (IoT), mixed initiatives including human-in- or human-on-the-loop, networking, privacy, real-time systems, safety, security, and verification. By abstracting from the particulars of specific systems and application domains, the CPS program seeks to reveal cross-cutting, fundamental scientific and engineering principles that underpin the integration of cyber and physical elements across all application domains. The program additionally supports the development of methods, tools, and hardware and software components based upon these cross-cutting principles, along with validation of the principles via prototypes and testbeds. This program also fosters a research community that is committed to advancing education and outreach in CPSand accelerating the transition of CPS research into the real world.

All proposals must include the following as part of the Project Description:

  • AResearch Descriptionthat describes the technical rationaleand technical approach of the CPS research, including the challenges that drive the research problem and how the research integrates cyber and physical components.This section must also describe how the research outcomes are translational to other application domains. Specifically, it must include:
    • A subsection titled “CPS Research Focus” which describes the cyber-physical system attributes of the challenge problem and clearly identifies the core CPS research areas addressed in which the novel and foundational research contributions are being made. This is intended as not a list of core areas but a focused discussion with content
  • An Evaluation/Experimentation Plan that describes how proposed concepts will be validated and outlines the metrics for success;
  • A Project Management and Collaboration Plan that summarizes how the project team is ideally suited to realize the project goals and how the team will ensure effective collaboration;

NSF is working closely with multiple agencies across the federal government, including the U.S. Department of Homeland Security (DHS) Science and Technology Directorate (S&T); the U.S. Department of Transportation (DOT) Federal Highway Administration (FHWA); and the U.S. Department of Agriculture National Institute of Food and Agriculture (USDA NIFA, hereafter referred to as NIFA).

Proposals for three classes of research and education projects—differing in scope and goals—are supported through the CPS program:

  • Smallprojects mayrequest a total budget of up to $600,000 for a period of up to 3 years. They are well suited to emerging new and innovative ideas that may have high impact on the field of CPS. Small projects proposals may be submitted at anytime during the year-long annual submission window.
  • Medium projects may request a total budget ranging from $600,001 to $1,200,000 for a period of up to 3 years. They are well suited to multi-disciplinary projects that accomplish clear goals requiring integrated perspectives spanning the disciplines. Medium Projects proposals may be submitted at anytime during the year-long annual submission window.
  • Frontierprojects must address clearly identified critical CPS challenges that cannot be achieved by a set of smaller projects. Furthermore, Frontier projects should also look to push the boundaries of CPS well beyond today’s systems and capabilities. Funding may be requested for a total of $1,200,001 to $7,000,000 for a period of 4 to 5 years. Note that the Frontier projects have a specific deadline.
Link to Additional Information: NSF Publication 24-581
Grantor Contact Information: If you have difficulty accessing the full announcement electronically, please contact:

NSF grants.gov support
grantsgovsupport@nsf.gov
Email:grantsgovsupport@nsf.gov

DISPLAYING: Synopsis 4

General Information

Document Type: Grants Notice
Funding Opportunity Number: 24-581
Funding Opportunity Title: Cyber-Physical Systems
Opportunity Category: Discretionary
Opportunity Category Explanation:
Funding Instrument Type: Grant
Category of Funding Activity: Science and Technology and other Research and Development
Category Explanation:
Expected Number of Awards: 31
Assistance Listings: 10.310 — Agriculture and Food Research Initiative (AFRI)
Cost Sharing or Matching Requirement: No
Version: Synopsis 4
Posted Date: Jun 05, 2024
Last Updated Date: Apr 26, 2025
Original Closing Date for Applications:
Current Closing Date for Applications: Jun 02, 2025 FRONTIER Proposals; SMALL and MEDIUM Proposals. Accepted anytime during the year-long annual submission window.
Archive Date: Jun 30, 2028
Estimated Total Program Funding: $30,070,000
Award Ceiling: $7,000,000
Award Floor:

Eligibility

Eligible Applicants: Others (see text field entitled “Additional Information on Eligibility” for clarification)
Additional Information on Eligibility: *Who May Submit Proposals: Proposals may only be submitted by the following:
-Non-profit, non-academic organizations: Independent museums, observatories, research laboratories, professional societies and similar organizations located in the U.S. that are directly associated with educational or research activities.
-Institutions of Higher Education (IHEs): Two- and four-year IHEs (including community colleges) accredited in, and having a campus located in the US, acting on behalf of their faculty members. Special Instructions for International Branch Campuses of US IHEs: If the proposal includes funding to be provided to an international branch campus of a US institution of higher education (including through use of sub-awards and consultant arrangements), the proposer must explain the benefit(s) to the project of performance at the international branch campus, and justify why the project activities cannot be performed at the US campus.

Additional Information

Agency Name: U.S. National Science Foundation
Description: Cyber-physical systems (CPS) are engineered systems that are built from, and depend upon, the seamless integration of computation and physical components. Advances in CPS will enable capability, adaptability, scalability, resiliency, safety, security, and usability that will expand the horizons of these critical systems. CPS technologies are transforming the way people interact with engineered systems, just as the Internet has transformed the way people interact with information. New, smart CPS drive innovation and competition in a range of application domains including agriculture, aeronautics, building design, civil infrastructure, energy, environmental quality, healthcare and personalized medicine, manufacturing, and transportation. CPS are becoming data-rich enabling new and higher degrees of automation and autonomy. Traditional ideas in CPS research are being challenged by new concepts emerging from artificial intelligence and machine learning. The integration of artificial intelligence with CPS, especially for real-time operation, creates new research opportunities with major societal implications.

While tremendous progress has been made in advancing CPS technologies, the demand for innovation across application domains is driving the need to accelerate fundamental research to keep pace. At the same time, the CPS program seeks to open new vistas for the research community to think beyond the usual cyber-physical paradigms and structures and propose creative ideas to address the myriad challenges of today’s systems as well as those of the future that have not yet been designed or fielded.

The CPS program aims to develop the core research needed to engineer these complex CPS, some of which may also require dependable, high-confidence, or provable behaviors. Core research areas of the program includecontrol, data analytics, and machinelearning including real-time learning for control, autonomy, design, Internet of Things (IoT), mixed initiatives including human-in- or human-on-the-loop, networking, privacy, real-time systems, safety, security, and verification. By abstracting from the particulars of specific systems and application domains, the CPS program seeks to reveal cross-cutting, fundamental scientific and engineering principles that underpin the integration of cyber and physical elements across all application domains. The program additionally supports the development of methods, tools, and hardware and software components based upon these cross-cutting principles, along with validation of the principles via prototypes and testbeds. This program also fosters a research community that is committed to advancing education and outreach in CPSand accelerating the transition of CPS research into the real world.

All proposals must include the following as part of the Project Description:

  • AResearch Descriptionthat describes the technical rationaleand technical approach of the CPS research, including the challenges that drive the research problem and how the research integrates cyber and physical components.This section must also describe how the research outcomes are translational to other application domains. Specifically, it must include:
    • A subsection titled “CPS Research Focus” which describes the cyber-physical system attributes of the challenge problem and clearly identifies the core CPS research areas addressed in which the novel and foundational research contributions are being made. This is intended as not a list of core areas but a focused discussion with content
  • An Evaluation/Experimentation Plan that describes how proposed concepts will be validated and outlines the metrics for success;
  • A Project Management and Collaboration Plan that summarizes how the project team is ideally suited to realize the project goals and how the team will ensure effective collaboration;

NSF is working closely with multiple agencies across the federal government, including the U.S. Department of Homeland Security (DHS) Science and Technology Directorate (S&T); the U.S. Department of Transportation (DOT) Federal Highway Administration (FHWA); and the U.S. Department of Agriculture National Institute of Food and Agriculture (USDA NIFA, hereafter referred to as NIFA).

Proposals for three classes of research and education projects—differing in scope and goals—are supported through the CPS program:

  • Smallprojects mayrequest a total budget of up to $600,000 for a period of up to 3 years. They are well suited to emerging new and innovative ideas that may have high impact on the field of CPS. Small projects proposals may be submitted at anytime during the year-long annual submission window.
  • Medium projects may request a total budget ranging from $600,001 to $1,200,000 for a period of up to 3 years. They are well suited to multi-disciplinary projects that accomplish clear goals requiring integrated perspectives spanning the disciplines. Medium Projects proposals may be submitted at anytime during the year-long annual submission window.
  • Frontierprojects must address clearly identified critical CPS challenges that cannot be achieved by a set of smaller projects. Furthermore, Frontier projects should also look to push the boundaries of CPS well beyond today’s systems and capabilities. Funding may be requested for a total of $1,200,001 to $7,000,000 for a period of 4 to 5 years. Note that the Frontier projects have a specific deadline.
Link to Additional Information: NSF Publication 24-581
Grantor Contact Information: If you have difficulty accessing the full announcement electronically, please contact:

NSF grants.gov support
grantsgovsupport@nsf.gov
Email:grantsgovsupport@nsf.gov

DISPLAYING: Synopsis 3

General Information

Document Type: Grants Notice
Funding Opportunity Number: 24-581
Funding Opportunity Title: Cyber-Physical Systems
Opportunity Category: Discretionary
Opportunity Category Explanation:
Funding Instrument Type: Grant
Category of Funding Activity: Science and Technology and other Research and Development
Category Explanation:
Expected Number of Awards: 31
Assistance Listings: 10.310 — Agriculture and Food Research Initiative (AFRI)
Cost Sharing or Matching Requirement: No
Version: Synopsis 3
Posted Date: Jun 05, 2024
Last Updated Date: Jan 29, 2025
Original Closing Date for Applications:
Current Closing Date for Applications: May 31, 2025 SMALL and MEDIUM Proposals. Accepted anytime during the year-long annual submission window.; FRONTIER Proposals
Archive Date: Jun 30, 2028
Estimated Total Program Funding: $30,070,000
Award Ceiling: $7,000,000
Award Floor:

Eligibility

Eligible Applicants: Others (see text field entitled “Additional Information on Eligibility” for clarification)
Additional Information on Eligibility: *Who May Submit Proposals: Proposals may only be submitted by the following:
-Non-profit, non-academic organizations: Independent museums, observatories, research laboratories, professional societies and similar organizations located in the U.S. that are directly associated with educational or research activities.
-Institutions of Higher Education (IHEs): Two- and four-year IHEs (including community colleges) accredited in, and having a campus located in the US, acting on behalf of their faculty members. Special Instructions for International Branch Campuses of US IHEs: If the proposal includes funding to be provided to an international branch campus of a US institution of higher education (including through use of sub-awards and consultant arrangements), the proposer must explain the benefit(s) to the project of performance at the international branch campus, and justify why the project activities cannot be performed at the US campus.

Additional Information

Agency Name: U.S. National Science Foundation
Description: Cyber-physical systems (CPS) are engineered systems that are built from, and depend upon, the seamless integration of computation and physical components. Advances in CPS will enable capability, adaptability, scalability, resiliency, safety, security, and usability that will expand the horizons of these critical systems. CPS technologies are transforming the way people interact with engineered systems, just as the Internet has transformed the way people interact with information. New, smart CPS drive innovation and competition in a range of application domains including agriculture, aeronautics, building design, civil infrastructure, energy, environmental quality, healthcare and personalized medicine, manufacturing, and transportation. CPS are becoming data-rich enabling new and higher degrees of automation and autonomy. Traditional ideas in CPS research are being challenged by new concepts emerging from artificial intelligence and machine learning. The integration of artificial intelligence with CPS, especially for real-time operation, creates new research opportunities with major societal implications.

While tremendous progress has been made in advancing CPS technologies, the demand for innovation across application domains is driving the need to accelerate fundamental research to keep pace. At the same time, the CPS program seeks to open new vistas for the research community to think beyond the usual cyber-physical paradigms and structures and propose creative ideas to address the myriad challenges of today’s systems as well as those of the future that have not yet been designed or fielded.

The CPS program aims to develop the core research needed to engineer these complex CPS, some of which may also require dependable, high-confidence, or provable behaviors. Core research areas of the program includecontrol, data analytics, and machinelearning including real-time learning for control, autonomy, design, Internet of Things (IoT), mixed initiatives including human-in- or human-on-the-loop, networking, privacy, real-time systems, safety, security, and verification. By abstracting from the particulars of specific systems and application domains, the CPS program seeks to reveal cross-cutting, fundamental scientific and engineering principles that underpin the integration of cyber and physical elements across all application domains. The program additionally supports the development of methods, tools, and hardware and software components based upon these cross-cutting principles, along with validation of the principles via prototypes and testbeds. This program also fosters a research community that is committed to advancing education and outreach in CPSand accelerating the transition of CPS research into the real world.

All proposals must include the following as part of the Project Description:

  • AResearch Descriptionthat describes the technical rationaleand technical approach of the CPS research, including the challenges that drive the research problem and how the research integrates cyber and physical components.This section must also describe how the research outcomes are translational to other application domains. Specifically, it must include:
    • A subsection titled “CPS Research Focus” which describes the cyber-physical system attributes of the challenge problem and clearly identifies the core CPS research areas addressed in which the novel and foundational research contributions are being made. This is intended as not a list of core areas but a focused discussion with content
  • An Evaluation/Experimentation Plan that describes how proposed concepts will be validated and outlines the metrics for success;
  • A Project Management and Collaboration Plan that summarizes how the project team is ideally suited to realize the project goals and how the team will ensure effective collaboration;

NSF is working closely with multiple agencies across the federal government, including the U.S. Department of Homeland Security (DHS) Science and Technology Directorate (S&T); the U.S. Department of Transportation (DOT) Federal Highway Administration (FHWA); and the U.S. Department of Agriculture National Institute of Food and Agriculture (USDA NIFA, hereafter referred to as NIFA).

Proposals for three classes of research and education projects—differing in scope and goals—are supported through the CPS program:

  • Smallprojects mayrequest a total budget of up to $600,000 for a period of up to 3 years. They are well suited to emerging new and innovative ideas that may have high impact on the field of CPS. Small projects proposals may be submitted at anytime during the year-long annual submission window.
  • Medium projects may request a total budget ranging from $600,001 to $1,200,000 for a period of up to 3 years. They are well suited to multi-disciplinary projects that accomplish clear goals requiring integrated perspectives spanning the disciplines. Medium Projects proposals may be submitted at anytime during the year-long annual submission window.
  • Frontierprojects must address clearly identified critical CPS challenges that cannot be achieved by a set of smaller projects. Furthermore, Frontier projects should also look to push the boundaries of CPS well beyond today’s systems and capabilities. Funding may be requested for a total of $1,200,001 to $7,000,000 for a period of 4 to 5 years. Note that the Frontier projects have a specific deadline.
Link to Additional Information: NSF Publication 24-581
Grantor Contact Information: If you have difficulty accessing the full announcement electronically, please contact:

NSF grants.gov support
grantsgovsupport@nsf.gov
Email:grantsgovsupport@nsf.gov

DISPLAYING: Synopsis 2

General Information

Document Type: Grants Notice
Funding Opportunity Number: 24-581
Funding Opportunity Title: Cyber-Physical Systems
Opportunity Category: Discretionary
Opportunity Category Explanation:
Funding Instrument Type: Grant
Category of Funding Activity: Science and Technology and other Research and Development
Category Explanation:
Expected Number of Awards: 31
Assistance Listings: 10.310 — Agriculture and Food Research Initiative (AFRI)
Cost Sharing or Matching Requirement: No
Version: Synopsis 2
Posted Date: Jun 05, 2024
Last Updated Date: Sep 11, 2024
Original Closing Date for Applications:
Current Closing Date for Applications: May 31, 2025 SMALL and MEDIUM Proposals. Accepted anytime during the year-long annual submission window.; FRONTIER Proposals
Archive Date: Jun 30, 2028
Estimated Total Program Funding: $30,070,000
Award Ceiling: $7,000,000
Award Floor:

Eligibility

Eligible Applicants: Others (see text field entitled “Additional Information on Eligibility” for clarification)
Additional Information on Eligibility: *Who May Submit Proposals: Proposals may only be submitted by the following:
-Non-profit, non-academic organizations: Independent museums, observatories, research laboratories, professional societies and similar organizations located in the U.S. that are directly associated with educational or research activities.
-Institutions of Higher Education (IHEs) – Two- and four-year IHEs (including community colleges) accredited in, and having a campus located in the US, acting
on behalf of their faculty members.Special Instructions for International Branch Campuses of US IHEs: If the proposal includes funding to be provided to an
international branch campus of a US institution of higher education (including through use of subawards and consultant arrangements), the proposer must explain
the benefit(s) to the project of performance at the international branch campus, and justify why the project activities cannot be performed at the US campus.

Additional Information

Agency Name: U.S. National Science Foundation
Description: Cyber-physical systems (CPS) are engineered systems that are built from, and depend upon, the seamless integration of computation and physical components. Advances in CPS will enable capability, adaptability, scalability, resiliency, safety, security, and usability that will expand the horizons of these critical systems. CPS technologies are transforming the way people interact with engineered systems, just as the Internet has transformed the way people interact with information. New, smart CPS drive innovation and competition in a range of application domains including agriculture, aeronautics, building design, civil infrastructure, energy, environmental quality, healthcare and personalized medicine, manufacturing, and transportation. CPS are becoming data-rich enabling new and higher degrees of automation and autonomy. Traditional ideas in CPS research are being challenged by new concepts emerging from artificial intelligence and machine learning. The integration of artificial intelligence with CPS, especially for real-time operation, creates new research opportunities with major societal implications.

While tremendous progress has been made in advancing CPS technologies, the demand for innovation across application domains is driving the need to accelerate fundamental research to keep pace. At the same time, the CPS program seeks to open new vistas for the research community to think beyond the usual cyber-physical paradigms and structures and propose creative ideas to address the myriad challenges of today’s systems as well as those of the future that have not yet been designed or fielded.

The CPS program aims to develop the core research needed to engineer these complex CPS, some of which may also require dependable, high-confidence, or provable behaviors. Core research areas of the program includecontrol, data analytics, and machinelearning including real-time learning for control, autonomy, design, Internet of Things (IoT), mixed initiatives including human-in- or human-on-the-loop, networking, privacy, real-time systems, safety, security, and verification. By abstracting from the particulars of specific systems and application domains, the CPS program seeks to reveal cross-cutting, fundamental scientific and engineering principles that underpin the integration of cyber and physical elements across all application domains. The program additionally supports the development of methods, tools, and hardware and software components based upon these cross-cutting principles, along with validation of the principles via prototypes and testbeds. This program also fosters a research community that is committed to advancing education and outreach in CPSand accelerating the transition of CPS research into the real world.

All proposals must include the following as part of the Project Description:

  • AResearch Descriptionthat describes the technical rationaleand technical approach of the CPS research, including the challenges that drive the research problem and how the research integrates cyber and physical components.This section must also describe how the research outcomes are translational to other application domains. Specifically, it must include:
    • A subsection titled “CPS Research Focus” which describes the cyber-physical system attributes of the challenge problem and clearly identifies the core CPS research areas addressed in which the novel and foundational research contributions are being made. This is intended as not a list of core areas but a focused discussion with content
  • An Evaluation/Experimentation Plan that describes how proposed concepts will be validated and outlines the metrics for success;
  • A Project Management and Collaboration Plan that summarizes how the project team is ideally suited to realize the project goals and how the team will ensure effective collaboration;

NSF is working closely with multiple agencies across the federal government, including the U.S. Department of Homeland Security (DHS) Science and Technology Directorate (S&T); the U.S. Department of Transportation (DOT) Federal Highway Administration (FHWA); and the U.S. Department of Agriculture National Institute of Food and Agriculture (USDA NIFA, hereafter referred to as NIFA).

Proposals for three classes of research and education projects—differing in scope and goals—are supported through the CPS program:

  • Smallprojects mayrequest a total budget of up to $600,000 for a period of up to 3 years. They are well suited to emerging new and innovative ideas that may have high impact on the field of CPS. Small projects proposals may be submitted at anytime during the year-long annual submission window.
  • Medium projects may request a total budget ranging from $600,001 to $1,200,000 for a period of up to 3 years. They are well suited to multi-disciplinary projects that accomplish clear goals requiring integrated perspectives spanning the disciplines. Medium Projects proposals may be submitted at anytime during the year-long annual submission window.
  • Frontierprojects must address clearly identified critical CPS challenges that cannot be achieved by a set of smaller projects. Furthermore, Frontier projects should also look to push the boundaries of CPS well beyond today’s systems and capabilities. Funding may be requested for a total of $1,200,001 to $7,000,000 for a period of 4 to 5 years. Note that the Frontier projects have a specific deadline.
Link to Additional Information: NSF Publication 24-581
Grantor Contact Information: If you have difficulty accessing the full announcement electronically, please contact:

NSF grants.gov support
grantsgovsupport@nsf.gov
Email:grantsgovsupport@nsf.gov

DISPLAYING: Synopsis 1

General Information

Document Type: Grants Notice
Funding Opportunity Number: 24-581
Funding Opportunity Title: Cyber-Physical Systems
Opportunity Category: Discretionary
Opportunity Category Explanation:
Funding Instrument Type: Grant
Category of Funding Activity: Science and Technology and other Research and Development
Category Explanation:
Expected Number of Awards: 31
Assistance Listings: 10.310 — Agriculture and Food Research Initiative (AFRI)
Cost Sharing or Matching Requirement: No
Version: Synopsis 1
Posted Date: Jun 05, 2024
Last Updated Date: Jun 05, 2024
Original Closing Date for Applications:
Current Closing Date for Applications: Sep 03, 2024 SMALL and MEDIUM Proposals. Accepted anytime during the year-long annual submission window.; FRONTIER Proposals
Archive Date: Jun 30, 2028
Estimated Total Program Funding: $30,070,000
Award Ceiling: $7,000,000
Award Floor:

Eligibility

Eligible Applicants: Others (see text field entitled “Additional Information on Eligibility” for clarification)
Additional Information on Eligibility: *Who May Submit Proposals: Proposals may only be submitted by the following:
-Non-profit, non-academic organizations: Independent museums, observatories, research laboratories, professional societies and similar organizations located in the U.S. that are directly associated with educational or research activities.
-Institutions of Higher Education (IHEs) – Two- and four-year IHEs (including community colleges) accredited in, and having a campus located in the US, acting
on behalf of their faculty members.Special Instructions for International Branch Campuses of US IHEs: If the proposal includes funding to be provided to an
international branch campus of a US institution of higher education (including through use of subawards and consultant arrangements), the proposer must explain
the benefit(s) to the project of performance at the international branch campus, and justify why the project activities cannot be performed at the US campus.

Additional Information

Agency Name: U.S. National Science Foundation
Description: Cyber-physical systems (CPS) are engineered systems that are built from, and depend upon, the seamless integration of computation and physical components. Advances in CPS will enable capability, adaptability, scalability, resiliency, safety, security, and usability that will expand the horizons of these critical systems. CPS technologies are transforming the way people interact with engineered systems, just as the Internet has transformed the way people interact with information. New, smart CPS drive innovation and competition in a range of application domains including agriculture, aeronautics, building design, civil infrastructure, energy, environmental quality, healthcare and personalized medicine, manufacturing, and transportation. CPS are becoming data-rich enabling new and higher degrees of automation and autonomy. Traditional ideas in CPS research are being challenged by new concepts emerging from artificial intelligence and machine learning. The integration of artificial intelligence with CPS, especially for real-time operation, creates new research opportunities with major societal implications.

While tremendous progress has been made in advancing CPS technologies, the demand for innovation across application domains is driving the need to accelerate fundamental research to keep pace. At the same time, the CPS program seeks to open new vistas for the research community to think beyond the usual cyber-physical paradigms and structures and propose creative ideas to address the myriad challenges of today’s systems as well as those of the future that have not yet been designed or fielded.

The CPS program aims to develop the core research needed to engineer these complex CPS, some of which may also require dependable, high-confidence, or provable behaviors. Core research areas of the program includecontrol, data analytics, and machinelearning including real-time learning for control, autonomy, design, Internet of Things (IoT), mixed initiatives including human-in- or human-on-the-loop, networking, privacy, real-time systems, safety, security, and verification. By abstracting from the particulars of specific systems and application domains, the CPS program seeks to reveal cross-cutting, fundamental scientific and engineering principles that underpin the integration of cyber and physical elements across all application domains. The program additionally supports the development of methods, tools, and hardware and software components based upon these cross-cutting principles, along with validation of the principles via prototypes and testbeds. This program also fosters a research community that is committed to advancing education and outreach in CPSand accelerating the transition of CPS research into the real world.

All proposals must include the following as part of the Project Description:

  • AResearch Descriptionthat describes the technical rationaleand technical approach of the CPS research, including the challenges that drive the research problem and how the research integrates cyber and physical components.This section must also describe how the research outcomes are translational to other application domains. Specifically, it must include:
    • A subsection titled “CPS Research Focus” which describes the cyber-physical system attributes of the challenge problem and clearly identifies the core CPS research areas addressed in which the novel and foundational research contributions are being made. This is intended as not a list of core areas but a focused discussion with content
  • An Evaluation/Experimentation Plan that describes how proposed concepts will be validated and outlines the metrics for success;
  • A Project Management and Collaboration Plan that summarizes how the project team is ideally suited to realize the project goals and how the team will ensure effective collaboration;

NSF is working closely with multiple agencies across the federal government, including the U.S. Department of Homeland Security (DHS) Science and Technology Directorate (S&T); the U.S. Department of Transportation (DOT) Federal Highway Administration (FHWA); and the U.S. Department of Agriculture National Institute of Food and Agriculture (USDA NIFA, hereafter referred to as NIFA).

Proposals for three classes of research and education projects—differing in scope and goals—are supported through the CPS program:

  • Smallprojects mayrequest a total budget of up to $600,000 for a period of up to 3 years. They are well suited to emerging new and innovative ideas that may have high impact on the field of CPS. Small projects proposals may be submitted at anytime during the year-long annual submission window.
  • Medium projects may request a total budget ranging from $600,001 to $1,200,000 for a period of up to 3 years. They are well suited to multi-disciplinary projects that accomplish clear goals requiring integrated perspectives spanning the disciplines. Medium Projects proposals may be submitted at anytime during the year-long annual submission window.
  • Frontierprojects must address clearly identified critical CPS challenges that cannot be achieved by a set of smaller projects. Furthermore, Frontier projects should also look to push the boundaries of CPS well beyond today’s systems and capabilities. Funding may be requested for a total of $1,200,001 to $7,000,000 for a period of 4 to 5 years. Note that the Frontier projects have a specific deadline.
Link to Additional Information: NSF Publication 24-581
Grantor Contact Information: If you have difficulty accessing the full announcement electronically, please contact:

NSF grants.gov support
grantsgovsupport@nsf.gov
Email:grantsgovsupport@nsf.gov

Related Documents

Packages

Agency Contact Information: NSF grants.gov support
grantsgovsupport@nsf.gov
Email: grantsgovsupport@nsf.gov
Who Can Apply: Organization Applicants

Assistance Listing Number Competition ID Competition Title Opportunity Package ID Opening Date Closing Date Actions
PKG00286844 Jun 05, 2024 Aug 28, 2025 View

Package 1

Mandatory forms

354699 RR_SF424_5_0-5.0.pdf

354699 NSF_CoverPage_2_3-2.3.pdf

354699 NSF_KeyPersonExpanded_3_3-3.3.pdf

354699 RR_Budget_3_0-3.0.pdf

354699 PerformanceSite_4_0-4.0.pdf

354699 RR_OtherProjectInfo_1_4-1.4.pdf

Optional forms

354699 NSF_DeviationAuthorization-1.1.pdf

354699 NSF_SuggestedReviewers-1.1.pdf

354699 RR_SubawardBudget_3_0-3.0.pdf

2025-07-12T16:58:22-05:00

Share This Post, Choose Your Platform!

About the Author: